eo_logo
 
Product added to cart

Edmund Optics®

Knowledge Center

 Verified library of trusted technical resources created by our 240+ global engineers.

Filter
Search Results for: Laser Sources (136)

Key Parameters of a Laser System

Learn the key parameters that must be considered to ensure you laser application is successful. Common terminology will be established for these parameters.

View Now Add to saved content

Laser Polarization: The Importance of Polarization in Laser Applications

Understanding the polarization of laser light is critical for many applications, as polarization impacts reflectance, focusing the beam, and other key behaviors.

View Now Add to saved content

A Guide to (Not Over) Specifying Losses in Laser Optics

Overspecifying optical losses in laser systems will not further improve your performance or reliability, but it could cost you additional money and/or time.

View Now Add to saved content

Bulk Laser Damage in Glass

Learn why the bulk laser-induced damage threshold (LIDT) of glass is significantly different than the LIDT optical components with coatings, such as AR thin films.

View Now Add to saved content

Common Laser Optics Materials

Understanding the most commonly used laser optics materials will allow for easy navigation of EO’s wide selection of laser optics components.

View Now Add to saved content

Why Laser Damage Testing is Critical for UV Laser Applications

Laser Induced Damage Threshold describes the maximum quantity of laser radiation an optic can take before damaging. Learn more at Edmund Optics.

View Now Add to saved content

Effects of Laser Mirror Surface Flatness

View Now Add to saved content

Importance of Beam Diameter on Laser Damage Threshold

The diameter of a laser highly affects an optic’s laser induced damage (LIDT) as beam diameter directly impacts the probability of laser damage.

View Now Add to saved content

Understanding Error Sources in Precision Positioning

Understanding the source of inaccurate and imprecise errors can help formulate strategies to prevent or correct them. Learn more at Edmund Optics.

View Now Add to saved content

Why Use a Flat Top Laser Beam?

Converting a Gaussian laser beam profile into a flat top beam profile can have numerous benefits including minimized wasted energy and increased feature accuracy.

View Now Add to saved content

Common Laser Types

Understanding the most common laser sources, modes of operation, and gain media provides the context for selecting the proper laser for your specific application.

View Now Add to saved content

Understanding and Specifying LIDT of Laser Components

Laser induced damage threshold (LIDT) denotes the maximum laser fluence an optical component can withstand with an acceptable amount of risk.

View Now Add to saved content

Laser Beam Expanders

Laser beam expanders are critical for reducing power density, minimizing beam diameter at a distance, and minimizing focused laser spot size.

View Now Add to saved content

Laser Beam Shaping Overview

Learn how to navigate the many available options for shaping the irradiance profile and phase of laser beams to maximize your laser system's performance.

View Now Add to saved content

Metrology for Laser Optics

Metrology is critical for ensuring that optical components consistently meet their desired specifications, especially in laser applications.

View Now Add to saved content

Simplifying Laser Alignment

Many challenges can arise when aligning a laser beam; knowing specific tips and tricks can help simplify the process. Learn more at Edmund Optics.

View Now Add to saved content

Coherent® Laser Selection Guide

Compare Coherent Laser specifications with the Edmund Optics selection guide.

View Now Add to saved content

Laser Damage Threshold Testing

Testing laser induced damage threshold (LIDT) is not standardized, so understanding how your optics were tested is critical for predicting performance.

View Now Add to saved content

High Laser Damage AR Coatings

Laser optics high reflectivity mirrors meet exceptional specifications that Edmund Optics' competitors often fail to meet. Learn more at Edmund Optics.

View Now Add to saved content

Absorption in Laser Optics

Light is absorbed in optical media through several methods including exciting electrons to higher energy states and converting to thermal energy

View Now Add to saved content

Laser Resonator Modes

The length of a laser resonator determines the laser’s resonator modes, or the electric field distributions that cause a standing wave in the cavity.

View Now Add to saved content

Fluorescence Imaging with Laser Illumination

Fluorescence imaging systems are composed of three major components, an illumination source, a photo-activated fluorophore sample, and detector.

View Now Add to saved content

Laser Power Density versus Energy Density

Power density, energy density, fluence, and irradiance are often incorrectly used in laser optics applications. Learn the correct definitions and usage.

View Now Add to saved content

Handling and Storing High Power Laser Mirrors

Check out these best practices for handling and storing high power laser mirrors to decrease the risk of damage and increase lifetimes at Edmund Optics.

View Now Add to saved content

How to Select the Right Light Pipe Homogenizing Rod

Don't know which light pipe homogenizing rod will work with your system? Learn about how to choose the correct rod and more information at Edmund Optics.

View Now Add to saved content

Highly Reflective Coatings

Highly reflective (HR) coatings are applied to optical components to minimize losses when reflecting lasers and other light sources.

View Now Add to saved content

What are Cylinder Lenses?

Learn what cylindrical lenses are, how they work, and how they are used in different systems in this guide by Edmund Optics.

View Now Add to saved content

Characteristics of 2µm Lasers

Laser Optics for 2μm lasers require very specific types of materials such as fused silica and germanium. Learn more at Edmund Optics.

View Now Add to saved content

Using C-Mount Components with the Optical Cage System

Edmund Optics' fixed, adjustable, and kinematic mounting components can easily be integrated into optical systems.

View Now Add to saved content

Basics of Ultrafast Lasers

Master the fundamentals of ultrafast lasers and how to choose optics that can withstand their high powers and short pulse durations.

View Now Add to saved content