Edmund Optics uses cookies to optimize and enhance the features and content on our website. Click “OK” for the full user experience, you can view additional information on the cookies we use by clicking the “Details” button. We do NOT sell your information from marketing cookies, we use it to improve ONLY YOUR experience with Edmund Optics.
We do not use cookies of this type.
Cookies are small text files that can be used by websites to make a user's experience more efficient.
The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission.
This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.
You can at any time change or withdraw your consent from the Cookie Declaration on our website.
Learn more about who we are, how you can contact us and how we process personal data in our Privacy Policy.
Please state your consent ID and date when you contact us regarding your consent.
Most web browsers allow you to view your cookies in the browser preferences, typically within the "Privacy" or "Security" tab. Some browsers allow you to delete specific cookies or even prevent cookies from being created. While disallowing cookies in your browser may provide a higher level of privacy, it is not recommended since many websites require cookies to function properly. Alternatively, you can visit www.aboutcookies.org which provides directions on how to block or delete cookies on all major browsers.
An in-line microscope introduces illumination into the system before the objective and aligns it with the optical axis. The "in-line" name actually refers to the type of illumination and is also known by other names such as axial, co-axial, through-the-objective, vertical, and incident brightfield. The clear difference from other types of illumination is that in this case the light is transmitted through the objective. An infinity-corrected system is used for this type of microscope. Since the light between the objective and secondary lens is collimated, the separation between these lenses can be adjusted to accept a beamsplitter that will introduce horizontally aligned input light and redirect it vertically down to the objective. This type of illumination is very efficient for high power objectives that need to evenly illuminate an opaque object, such as a semiconductor wafer. Since this type of system is very sensitive to mounting with objective powers 20X and higher, we recommend using a vibration isolation platform. For proper focusing, a rack and pinion movement is always suggested for the system.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2024, Edmund Optics Singapore Pte. Ltd, 18 Woodlands Loop #04-00, Singapore 738100
California Consumer Privacy Acts (CCPA): Do Not Sell or Share My Personal Information
California Transparency in Supply Chains Act