Edmund Optics uses cookies to optimize and enhance the features and content on our website. Click “OK” for the full user experience, you can view additional information on the cookies we use by clicking the “Details” button. We do NOT sell your information from marketing cookies, we use it to improve ONLY YOUR experience with Edmund Optics.
Necessary cookies help make a website usable by enabling basic functions like page navigation and access to secure areas of the website. The website cannot function properly without these cookies.
__cf_bmThis cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
CookieConsentStores the user's cookie consent state for the current domain
Maximum Storage Duration: 1 yearType: HTTP Cookie
Preference cookies enable a website to remember information that changes the way the website behaves or looks, like your preferred language or the region that you are in.
ce_diff_timeUsed by Crazy Egg to offset time for analytics purposes.
Maximum Storage Duration: 14 daysType: HTTP Cookie
ce_ip_addressUsed by Crazy Egg to store the user's IP address.
Maximum Storage Duration: 14 daysType: HTTP Cookie
Marketing cookies are used to track visitors across websites. The intention is to display ads that are relevant and engaging for the individual user and thereby more valuable for publishers and third party advertisers.
_gaexpThis cookie is used by Google Analytics to determine if the visitor is involved in their marketing experiments.
Maximum Storage Duration: 14 daysType: HTTP Cookie
_mkto_trkContains data on visitor behaviour and website interaction. This is used in context with the email marketing service Marketo.com, which allows the website to target visitors via email.
Maximum Storage Duration: 14 daysType: HTTP Cookie
gwccEnables Google Website Call Conversions - This registers if the visitor has clicked on call within the "contact us" sub-page. This information is used for statistics and marketing purposes.
Maximum Storage Duration: 14 daysType: HTTP Cookie
mTracking pixel used by South Korean Company, Naver Analytics to track website engagement
Maximum Storage Duration: 14 daysType: HTTP Cookie
NWBUsed by South Korean Company, Naver Analytics for web analytics that tracks and reports website traffic
Maximum Storage Duration: 14 daysType: HTTP Cookie
NWB_LEGACYUsed by South Korean Company, Naver Analytics for web analytics that tracks and reports website traffic
Maximum Storage Duration: 14 daysType: HTTP Cookie
wcs_btUsed by South Korean Company, Naver Analytics for cross site web analytics
Maximum Storage Duration: 14 daysType: HTTP Cookie
Unclassified cookies are cookies that we are in the process of classifying, together with the providers of individual cookies.
List of domains your consent applies to: [#BULK_CONSENT_DOMAINS#]
Cookie declaration last updated on 3/20/25 by Cookiebot
[#IABV2_TITLE#]
[#IABV2_BODY_INTRO#]
[#IABV2_BODY_LEGITIMATE_INTEREST_INTRO#]
[#IABV2_BODY_PREFERENCE_INTRO#]
[#IABV2_BODY_PURPOSES_INTRO#]
[#IABV2_BODY_PURPOSES#]
[#IABV2_BODY_FEATURES_INTRO#]
[#IABV2_BODY_FEATURES#]
[#IABV2_BODY_PARTNERS_INTRO#]
[#IABV2_BODY_PARTNERS#]
Cookies are small text files that can be used by websites to make a user's experience more efficient.
The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission.
This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.
You can at any time change or withdraw your consent from the Cookie Declaration on our website.
Learn more about who we are, how you can contact us and how we process personal data in our Privacy Policy.
Please state your consent ID and date when you contact us regarding your consent.
Most web browsers allow you to view your cookies in the browser preferences, typically within the "Privacy" or "Security" tab. Some browsers allow you to delete specific cookies or even prevent cookies from being created. While disallowing cookies in your browser may provide a higher level of privacy, it is not recommended since many websites require cookies to function properly. Alternatively, you can visit www.aboutcookies.org which provides directions on how to block or delete cookies on all major browsers.
Edmund Optics Imaging Lab Module 3.1: Introduction to Illumination Concepts
Understanding illumination concepts such as hot spots, diffuse reflections, light transmission, and fluorescence is important in determining the correct light source for an imaging application. Join Gregory Hollows, Director of Machine Vision Solutions, as he reviews how light interacts with materials in different ways, and how to use this interaction to match the light source to the geometry of the object under inspection. For more information on the suggested types of illumination for different object materials, please read our Choose the Correct Illumination application note.
Hi, I am Greg Hollows. Welcome to the Imaging Lab. In this segment, we are going to discuss how lighting interacts with different objects and putting together the illumination for an imaging system. Much like playing pool, if you shoot a pool ball into the bumper on a pool table, the angle of incidence is equal to the angle of reflection of that ball going off the bumper. Lighting works the same way going off of any given object. Let's start with the simplest example. If we take light, a laser let's say, something of a collimated sort of variety, and shine it onto a mirror, we are going to get the angle of incidence equal the angle of reflection. Basically, if I was to shoot a laser into that object and it hit down and came back off, we would be able to see this angle coming off of the object itself and we would be able to calculate those angles and they would be equal, the in and the out. Now when we start thinking about light in general, when I think about even the lights that are around me here, they are very diffuse, and they scatter across the entire surface that I have here. So, there are lots of different angles that are coming into this object, but anywhere they strike it, they are still going to come off with an equal angle of incidence and angle of reflection from that object itself. Now what we want to think about now as we start looking at different objects and different materials is how that light truly interacts with those objects and what creates the different effects that we see. If we were to take a light source and take it into a mirrored surface, we would see that absolute angle come off and we would see hot spots actually coming off of that mirror when we looked at it at that angle of reflection coming towards our eyes. We would actually be able to see those lights themselves. The other thing that can happen is when you get a diffuse or scattered sort of reflection. That has more to do with the material itself, and can also have to do with the lighting, but when those angles of the rays of light are coming into the object, we are hitting an object like this table cloth here, it has a very complex geometry to it. This table cloth is going to have angles going at all sorts of different direction. That gives us a very scattered effect. That is why we get a nice diffuse reflection if it was a white table cloth or one of these boxes or something like that. The next thing that can happen with light as it goes into an object is that it can actually be transmitted through. We see this in every day of our lives as we look at things like window panes or through the lens of a camera system. If we were to look through it, we would see light transmitted through to our eyes and you may see some amount of subtle reflections there but depending on that material, you can actually see light passing through the object itself. The other thing that can happen, it can be absorbed, as we take a look at again this table cloth that we have here. Some of the lens housings, they're blackened. The light is actually being absorbed by them and that is why we see a black coloring here because all the lighting is basically being absorbed and we see an absence of color reflect the light to our eyes. The other thing that can happen is we could get emission in the system. Fluorescence is an example of this where light of one wavelength goes in and is absorbed and then the actual object itself becomes a light source of sorts where the light itself is actually retransmitted. It could be at the same wavelength, usually at a different one, and it's coming off and being scattered out to the system relating to the geometry of the object itself. So, there are lots of different ways that lighting can interact with the object and it really depends on the geometry of the object itself. Now, why is all that important? The critical part of that is that you go through all these different types of materials and the ways that light can interact with the object. It is going to define what sort of light source we are going to have to use for the system, the sort of geometry it is going to have to allow us to see whether it is a scratch or a defect or bring out some edges or other information that we want to see in our imaging. We're going to have to choose a light source that matches the geometry of that very very well to see that information. What you are going to find is there is a variety of geometries that can be used and those really constitute or work their way over to the different types of light source that are available. And there is a wide range of them because you could have some objects that are like this table here - very flat, kind of diffuse material. That is going to need one type of lighting. And then you might have something that is a curved reflective surface or something that is translucent or transparent that is also curved and trying to pick up details, and that is going to require a different lighting system to be able to take into account these angles of incidence and reflection and be able to highlight which reaction we want to see. The next segment we are going to look at is called W and how that is going to tell us how the geometries of light are affecting the actual object that we are looking at. And that allows us to transition over to what type of light sources that we need to see in the following segments. That is the end of this segment. You can click on any of the links shown on the screen to go on to an other segment or you can continue on to the W in Illumination.
Please select your shipping country to view the most accurate inventory information, and to determine the correct Edmund Optics sales office for your order.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2024, Edmund Optics Singapore Pte. Ltd, 18 Woodlands Loop #04-00, Singapore 738100
California Consumer Privacy Acts (CCPA): Do Not Sell or Share My Personal Information
California Transparency in Supply Chains Act