eo_logo
 
Product added to cart

1064nm, 25.4mm Dia., Diffractive Axicon

HOLO/OR Diffractive Axicons

×
Stock #14-678 3-5 days
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
S$6,496.00
Qty 1+
S$6,496.00
Volume Pricing
Request Quote
Get Product Downloads
Input Beam Mode:
SM or MM
Minimum Beam Diameter (mm):
0.27
Overall Efficiency (%):
92
Zero Order, Relative to the Incident Beam (%):
<1
Ring Angle P2P (°):
1.35
Axicon Type:
Positive

Physical & Mechanical Properties

Clear Aperture CA (mm):
22.9
Diameter (mm):
25.40 +0.05/-0.15
Thickness (mm):
3.00 ±0.1

Optical Properties

Coating:
Laser V-Coat (1064nm)
Design Wavelength DWL (nm):
1064
Substrate: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
Fused Silica (Corning 7980)
Damage Threshold, Reference: Damage threshold for optical components varies by substrate material and coating. Click here to learn more about this specification.

Regulatory Compliance

RoHS 2015:
Certificate of Conformance:
Reach 233:

Product Family Description

  • Transform Input Beam into a Bessel-like Beam
  • Thinner Design than Refractive Axicons
  • Designed for 1064nm Nd:YAG Lasers
  • Compatible with Single Mode or Multimode Beams

HOLO/OR Diffractive Axicons are diffractive optical elements (DOE) that transform an input laser beam into a Bessel-like beam that can then be focused to a ring. Unlike refractive axicons, diffractive axicons do not have an apex, enabling consistent performance even with small cone angles. Additionally, their diffractive design enables thinner, more compact form factors than standard refractive axicons. HOLO/OR Diffractive Axicons are used in materials processing applications including laser cutting, drilling, and welding, as well as in laser systems as axicon resonators.

Note: Diffractive optical elements are not intended for use outside of their design wavelength. Diffractive optical elements will have decreased performance if their surfaces become dirty from oil or other substances. It is recommended to always use gloves or finger cots when handling these optics.

Edmund Optics offers a range of diffractive optical elements from HOLO/OR for laser applications, including:

  • Diffractive Diffusers: used to convert an input laser beam to a defined shape with homogenized distribution
  • Diffractive Beamsplitters: used to split an input laser beam into a 1D array or 2D matrix output
  • Diffractive Beam Shapers: used to transform a nearly-Gaussian laser beam into a defined shape with uniform flat top intensity distribution
  • Diffractive Beam Samplers: used to transmit an input laser beam while producing two higher order beams that can be used to monitor high power lasers
  • Diffractive Axicons: used to transform an input laser beam to a Bessel beam that can be focused to a ring
  • Diffractive Vortex Phase Plates: used to convert a Gaussian profile beam to a donut-shaped energy ring
Filter

Understanding and Specifying LIDT of Laser Components

Laser induced damage threshold (LIDT) denotes the maximum laser fluence an optical component can withstand with an acceptable amount of risk.

View Now

Anti-Reflection (AR) Coatings

Anti-reflection (AR) coatings are applied to optical components to increase throughput and reduce hazards caused by back-reflections.

View Now

Laser Beam Shaping Overview

Learn how to navigate the many available options for shaping the irradiance profile and phase of laser beams to maximize your laser system's performance.

View Now

Axicon Calculator

An In-Depth Look at Axicons

Axicons can be used in a variety of different fields. Find out more about axicons and how to use them in applications at Edmund Optics.

View Now

Glass Cutting with Cailabs Canunda Reflective Axicons

Watch how LZH uses the Cailabs Canunda Reflective Axicons to improve the efficiency and quality of glass cutting by generating high-power Bessel beams.

View Now

Axicons Review

Axicons are conical-shaped optical components used to create a ring-shaped beam.

View Now

Axicons in Action

How can you determine the diameter and ring thickness of the beam created with a Plano-Convex (PCX) Axicon Lens?

Axicon

Different Types of LIDT Specifications

Not all optical components are tested for laser-induced damage threshold (LIDT) and testing methods differ, resulting in different types of LIDT specifications.

View Now

Key Parameters of a Laser System

Learn the key parameters that must be considered to ensure you laser application is successful. Common terminology will be established for these parameters.

View Now

Laser Damage Threshold Testing

Testing laser induced damage threshold (LIDT) is not standardized, so understanding how your optics were tested is critical for predicting performance.

View Now

Metrology for Laser Optics

Metrology is critical for ensuring that optical components consistently meet their desired specifications, especially in laser applications.

View Now

Laser Optics Lab Trailer

The Laser Optics Lab video series discusses laser optics concepts including specifications, coating technologies, product types, and more

View Now

Introduction to Laser Optics Lab

The Laser Optics Lab video series discusses laser optics concepts including specifications, coating technologies, product types, and more

View Now

Laser Optics Lab:Back Reflections

Back reflections are created when some or part of your beam are reflected back to the source.

View Now

Laser Optics Lab: Coatings

Optical coatings are composed of thin-film layers used to enhance transmission or reflection properties within an optical system.

View Now

Laser Optics Lab:Specifications for Selecting a Laser

When determining which laser to use for your application, consider the following specifications: wavelength, coherence length, beam divergence, and Rayleigh range.

View Now

What makes laser optics different from normal optics?

Building a Mach-Zehnder Interferometer

Learn how to assemble, align, and use a Mach-Zehnder Interferometer completely out of off-the-shelf products from Edmund Optics in this detailed guide.

View Now

Laser

Laser Damage Threshold

Refraction